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When physically realized, quantum information processing (QIP) can be used to solve problems in
physics simulation, cryptanalysis and secure communication for which there are no known efficient so-
lutions based on classical information processing. Numerous proposals exist for building the devices
required for QIP by using a variety of systems that exhibit quantum properties. Examples include nuclear
spins in molecules, electron spins or charge in quantum dots, collective states of superconductors, and
photons [1]. In all of these cases, there are well established physical models that, under ideal conditions,
allow for exact realizations of quantum information and its manipulation. However, real physical systems
never behave exactly like the ideal models. The main problems are environmental noise, which is due to
incomplete isolation of the system from the rest of the world, and control errors, which are caused by cali-
bration errors and random fluctuations in control parameters. Attempts to reduce the effects of these errors
are confronted by the conflicting needs of being able to control and reliably measure the quantum systems.
These needs require strong interactions with control devices, and systems sufficiently well isolated to
maintain coherence, which is the subtle relationship between the phases in a quantum superposition. The
fact that quantum effects rarely persist on macroscopic scales suggests that meeting these needs requires
considerable outside intervention.

Soon after P. Shor published the efficient quantum factoring algorithm with its applications to break-
ing commonly used public-key cryptosystems, A. Steane [2] and P. Shor [3] gave the first constructions of
quantum error-correcting codes. These codes make it possible to store quantum information so that one
can reverse the effects of the most likely errors. By demonstrating that quantum information can exist in
protected parts of the state space, they showed that, in principle, it is possible to protect against environ-
mental noise when storing or transmitting information. Stimulated by these results and in order to solve
the problem of errors happening during computation with quantum information, researchers initiated a se-
ries of investigations to determine whether it was possible to quantum-compute in a fault-tolerant manner.
The outcome of these investigations was positive and culminated in what are now known as “accuracy
threshold theorems” [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. According to these theorems, if the effects of
all errors are sufficiently small per quantum bit (qubit) and step of the computation, then it is possible to
process quantum information arbitrarily accurately with reasonable resource overheads. The requirement
on errors is quantified by a maximum tolerable error rate called the threshold. The threshold value depends
strongly on the details of the assumed error model. All threshold theorems require that errors at different
times and locations be independent and that the basic computational operations can be applied in parallel.
Although the proven thresholds are well out of range of today’s devices there are signs that in practice,
fault-tolerant quantum computation may be realizable.

In retrospect, advances in quantum error correction and fault-tolerant computation were made possible
by the realization that accurate computation does not require the state of the physical devices supporting
the computation to be perfect. In classical information processing, this observation is so obvious that it is
often forgotten: No two letters “e” on a written page are physically identical, and the number of electrons
used to store a bit in a computer’s memory varies substantially. Nevertheless, we have no difficulty in
accurately identifying the desired letter or state. A crucial conceptual difficulty with quantum information
is that by its very nature, it cannot be identified by being “looked” at. As a result, the sense in which
quantum information can be accurately stored in a noisy system needs to be defined without reference
to an observer. There are two ways to accomplish this task. The first is to define stored information to
be the information that can, in principle, be extracted by a quantum decoding procedure. The second is
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to explicitly define “subsystems” (particle-like aspects of the quantum device) that contain the desired
information. The first approach is a natural generalization of the usual interpretations of classical error-
correction methods, whereas the second is motivated by a way of characterizing quantum particles.

In this introduction we motivate and explain the “decoding” and “subsystems” view of quantum error
correction. We explain how quantum noise in QIP can be described and classified, and summarize the
requirements that need to be satisfied for fault tolerance. Considering the capabilities of currently available
quantum technology, the requirements appear daunting. But the idea of “subsystems” shows that these
requirements can be met in many different, and often unexpected ways.

Our introduction is structured as follows: The basic concepts are introduced by example, first for
classical and then for quantum codes. We then show how the concepts are defined in general. Following
a discussion of error models and analysis (Sect.4), we state and explain the necessary and sufficient
conditions for detectability of errors and correctability of error sets (Sect.5). This is followed by a brief
introduction to two of the most important methods for constructing error-correcting codes and subsystems
(Sect.6). For a basic overview, it suffices to read the beginnings of these more technical sections. The
principles of fault-tolerant quantum computation are outlined in the last section.

1 Concepts and Examples

Communication is the prototypical application of error-correction methods. To communicate, a sender
needs to convey information to a receiver over a noisy “communication channel”. Such a channel can be
thought of as a means of transmitting an information-carrying physical system from one place to another.
During transmission, the physical system is subject to disturbances that can affect the information carried.
To use a communication channel, the sender needs to “encode” the information to be transmitted in the
physical system. After transmission, the receiver “decodes” the information. The procedure is shown in
Fig. 1.

1 0 1 0
0 1 0 1
1 1 1 0
1 1 0 0
1 0

1 0 1 0
0 1 0 1
1 1 1 0
1 1 0 0
1 0

Encode

Transmit

Decode
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FIG. 1: A typical application of error-correction methods: The illustration shows the three main steps
required for communication. Information is first encoded in a physical system, then transmitted over the
noisy communication channel and finally decoded. The combination of encoding and decoding is chosen
so that errors have no effect on the transmitted information.

The protection of stored information is an other important application of error-correction methods. In
this case, the user encodes the information in a storage system and retrieves it at a later time. Provided
that there is no communication from the receiver to the sender, any error-correction method applicable
to communication is also applicable to storage and vice versa. In Sect.7 we discuss the problem of
fault-tolerant computation, which requires enhancing error-correction methods in order to enable applying
operations to encoded information without losing protection against errors.

To illustrate the different features of error-correction methods we consider three examples. We begin
by describing them for classical information, but in each case, there is a quantum analogue that will be
introduced later.

1.1 Trivial Two-Bit Example

Consider a physical system consisting of two bits with state space{00, 01, 10, 11}. We use the convention
that state symbols for physical systems subject to errors are in brown. States changed by errors are shown
in red1. In this example, the system is subject to errors that flip (apply thenot operator to) the first bit
with probability .5. We wish to safely store one bit of information. To this end, we store the information
in the second physical bit, because this bit is unaffected by the errors (Fig.2).

1These graphical conventions are not crucial for understanding what the symbols mean and are for emphasis only.
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Physical system and error model:

a b

not(a) b

a b
prob.=.5

prob.=.5

Usage examples.

Store0 in the second bit:

0 0

0 0

1 0

Store1 in the second bit:

0 1

0 1

1 1

FIG. 2: A simple error model. Errors affect only the first bit of a physical two bit system. Alljoint
states of the two bits are affected by errors. For example, the joint state00 is changed by the error to10.
Nevertheless the value of the information represented in the second physical bit is unchanged.

As suggested by the usage example in Fig.1, one can “encode” one bit of information in the physical
system by the map that takes0 → 00 and1 → 01. This means that the states0 and1 of an ideal bit are
represented by the states00 and01 of the noisy physical system, respectively.
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To “decode” the information one can extract the second bit by the following map:

00 → 0

10 → 0

01 → 1

11 → 1

(1)

This procedure ensures that the encoded bit is recovered by the decoding regardless of the error. There are
other combinations of encoding and decoding that work. For example, in the encoding, we could swap
the meaning of0 and1 by using the map0 → 01 and1 → 00. The new decoding procedure adds a bit
flip to the one shown above. The only difference between this combination of encoding/decoding and the
previous one lies in the way in which the information is represented inside the range of the encoding. The
range consists of the two states00 and01 and is called the “code”. The states in the code are called “code
words”.

Although trivial, the example just given is typical of ways for dealing with errors. That is, there is
always a way of viewing the physical system as a pair of abstract systems: The first member of the pair
experiences the errors and the second carries the information to be protected. The two abstract systems
are called “subsystems” of the physical system and are usually not identifiable with any of the system’s
physical components. The first is the “syndrome” subsystem and the second is the “information-carrying”
subsystem. Encoding consists of initializing the first system and storing the information in the second.
Decoding is accomplished by extraction of the second system. In the example, the two subsystems are
readily identified as the two physical bits that make up the physical system. The first is the syndrome
subsystem and is initialized to0 by the encoding. The second carries the encoded information.

1.2 The Repetition Code

The next example is a special case of the main problem of classical error-correction and occurs in typical
communication settings and in computer memories. Let the physical system consist of three bits. The
effect of the errors is to independently flip each bit with probabilityp, which we take to bep = .25. The
repetition code results from triplicating the information to be protected. An encoding is given by the map
0 → 000, 1 → 111. The repetition code is the set{000, 111}, which is the range of the encoding. The
information can be decoded with majority logic: If the majority of the three bits is0, output0, otherwise
output1.

How well does this encoding/decoding combination work for protecting one bit of information against
the errors? The decoding fails to extract the bit of information correctly if two or three of the bits were
flipped by the error. We can calculate the probability of incorrect decoding as follows: The probability of
a given pair of bits having flipped is.252 ∗ .75. There are three different pairs. The probability of three bits
having flipped is.253. Thus the probability of error in the encoded bit is3 · .252 ∗ .75 + .253 = 0.15625.
This is an improvement over.25, which is the probability that the information represented in one of the
three physical bits is corrupted by error.

To see that one can interpret this example by viewing the physical system as a pair of subsystems, it
suffices to identify the physical system’s states with the states of a suitable pair. The following shows such
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a “subsystem identification”:
000 ↔ 00 · 0
001 ↔ 11 · 0
010 ↔ 01 · 0
100 ↔ 10 · 0
011 ↔ 10 · 1
101 ↔ 01 · 1
110 ↔ 11 · 1
111 ↔ 00 · 1

(2)

The left side consists of the 8 states of the physical system, which are the possible states for the three
physical bits making up the system. The right side shows the corresponding states for the subsystem pair.
The syndrome subsystem is a two bit subsystem, whose states are shown first. The syndrome subsystem’s
states are called “syndromes”. After the “·” symbol are the states of the information-carrying one-bit
subsystem.

In the subsystem identification above, the repetition code consists of the two states for which the
syndrome is00. That is, the code states000 and111 correspond to the states00 · 0 and00 · 1 of the
subsystem pair. For a state in this code, single-bit flips do not change the information-carrying bit, only
the syndrome. For example, a bit flip of the second bit changes000 to 010 which is identified with01 · 0.
The syndrome has changed from00 to 01. Similarly, this error changes111 to 101 ↔ 01·1. The following
diagram shows these effects:

000 ↔ 00 · 0 111 ↔ 00 · 1
↓ ↓

010 ↔ 01 · 0 101 ↔ 01 · 1
(3)

Note that the syndrome change is the same. In general, with this subsystem identification, we can infer
from the syndrome which single bit was flipped on an encoded state.

Errors usually act cumulatively over time. For the repetition code this is a problem in the sense that
it takes only a few actions of the above error model for the two- and three-bit errors to overwhelm the
encoded information. One way to delay the loss of information is to decode and re-encode sufficiently
frequently. Instead of explicitly decoding and re-encoding, the subsystem identification can be used di-
rectly for the same effect, namely, that of resetting the syndrome subsystem’s state to00. For example,
if the state is10 · 1, it needs to be reset to00 · 1. Therefore, using the subsystem identification, resetting
the syndrome subsystem requires changing the state011 to 111. It can be checked that, in every case,
what is required is to set all bits of the physical system to the majority of the bits. After the the syndrome
subsystem has been reset, the information is again protected against the next one-bit error.

1.3 A Code for a Cyclic System

We next consider a physical system that does not consist of bits. This system has seven states symbolized
by 0, 1, 2, 3, 4, 5 and6. Let s1 be the right-circular shift operator defined bys1(l) = l + 1 for 0 ≤ l ≤ 5
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ands1(6) = 0. Defines0 = 1l (the identity operator),

sk = s1 . . . s1︸ ︷︷ ︸
k times

, (4)

ands−k = s−1
k (left-circular shift byk). The model can be visualized as a pointer on a dial with seven

positions as shown in Fig.3.

3

2

1
0

6
5

4
s1

FIG. 3: A seven state cyclic system. The position of the pointer on the seven-position dial determines the
state of the system. With the pointer in the position shown, the state is1. Errors have the effect of rotating
the pointer clockwise (to the “right”) or counter-clockwise (to the “left”). The effect ofs1 is to rotate the
pointer clockwise as shown by the red arrow.

Suppose that the errors consist of applyingsk with probabilityqe−k2
, whereq = 0.5641 is chosen so that

the probabilities sum to1, that is
∑∞

k=−∞ qe−k2
= 1. Thuss0 has probability0.5641, and each ofs−1 and

s1 has probability0.2075. These are the main errors that we need to protect against. Continuous versions
of this error model in the context of communication channels are known as “Gaussian channels”.
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One bit can be encoded in this physical system by the map0 → 1, 1 → 4. To decode with protection
againsts0, s−1 ands1, use the mapping:

0 → 0

1 → 0

2 → 0

3 → 1

4 → 1

5 → 1

6 → fail

(5)

If state6 is encountered, we know that an error involving a shift of at least2 (left or right) occurred, but
there is no reasonable way of decoding it to the state of a bit. This means that the error is detected, but we
cannot correct it. Error detection can be used by the receiver of information to ask for it to be sent again.
The probability of correctly decoding with this code is at least0.9792, which is the probability that the
error caused a shift of at most one.

As before, a pair of syndrome and information-carrying subsystems can be identified as being used
by the encoding and decoding procedures. It suffices to correctly identify the syndrome states, which we
name−1, 0 and1, because they indicate which of the likeliest shifts happened. The resulting subsystem
identification is

0 ↔ −1 · 0
1 ↔ 0 · 0
2 ↔ 1 · 0
3 ↔ −1 · 1
4 ↔ 0 · 1
5 ↔ 1 · 1

(6)

A new feature of this subsystem identification is that it is incomplete: Only a subset of the state space is
identified. In this case, the complement can be used for error detection.

Like the repetition code, this code can be used in a setting where the errors happen repeatedly. Again
it suffices to reset the syndrome subsystem, in this case to0, to keep the encoded information protected.
After the syndrome subsystem has been reset, a subsequents1 or s−1 error affects only the syndrome.

2 Principles of Error Correction

When considering the problem of limiting the effects of errors in information processing, the first task is
to establish the properties of the physical systems that are available for representing and computing with
information. Thus it is necessary to learn the following:

1. The physical system to be used, in particular the structure of its state space.

2. The available means for controlling this system.

3. The type of information to be processed.

4. The nature of the errors, that is, the error model.
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With this information, the approaches used to correct errors in the three examples provided in the previous
section involve the following:

1. Determine a code, which is a subspace of the physical system that can represent the information to
be processed.

2.a Identify a decoding procedure that can restore the information represented in the code after any one
of the most likely errors occurred.

2.b Or, determine a pair of syndrome and information-carrying subsystems such that the code corre-
sponds to a “base” state of the syndrome subsystem and the primary errors act only on the syndrome.

3. Analyze the error behavior of the code and subsystem.

The tasks of determining a code and of identifying decoding procedures or subsystems are closely
related. As a result, the following questions are at the foundation of the theory of error-correction: What
properties must a code satisfy so that it can be used to protect well against a given error model? How
does one obtain the decoding or subsystem identification that achieves this protection? In many cases, the
answers can be based on choosing a fixed set of error operators that represents well the most likely errors
and then determining whether these errors can be protected against without any loss of information. Once
an error set is fixed, determining whether it is “correctable” can be cast in terms of the idea of “detectable”
errors. This idea works equally well for both classical and quantum information. We introduce it using
classical information concepts.

2.1 Error Detection

Error detection was used in the cyclic system example to reject a state that could not be properly decoded.
In the communication setting, error control methods based on error detection alone work as follows: The
encoded information is transmitted. The receiver checks whether the state is still in the code, that is,
whether it could have been obtained by encoding. If not, the result is rejected. The sender can be informed
of the failure so that the information can be retransmitted. Given a set of error operators that need to be
protected against, the scheme is successful if for each error operator, either the information is unchanged,
or the error is detected. Thus we can say that an operatorE is “detectable” by a code if for each statex in
the code, eitherEx = x orEx is not in the code. See Fig.4

11



FIG. 4: Pictorial representation of typical detectable and undetectable errors for a code. Three examples
are shown. In each, the code is represented by a brown oval containing three code words (green points).
The effect of the error operator is shown as arrows. In(A), the error does not change the code words and
is therefore considered detectable. In(B), the error maps the code words outside the code, so that it is
detected. In(C), one code word is mapped to another, as shown by the red arrow. Finding that a received
word is still in the code does not guarantee that it was the originally encoded word. The error is therefore
not detectable.

What errors are detectable by the codes in the examples? The code in the first example consists of
00 and01. Every operator that affects only the first bit is therefore detectable. In particular, all operators
in the error model are detectable. In the second example, the code consists of the states000 and111.
The identity operator has no effect and is therefore detectable. Any flips of exactly one or two bits are
detectable because the states in the code are changed to states outside the code. The error that flips all bits
is not detectable because it preserves the code but changes the states in the code. With the code for the
cyclic system, shifts by−2,−1, 0, 1, 2 are detectable but not shifts by3.

To conclude the section, we state a characterization of detectability, which has a natural generalization
to the case of quantum information.

Theorem. E is detectable by a code if and only if for allx 6= y in the code,Ex 6= y. (7)

2.2 From Error Detection to Error Correction

Given a codeC and a set of error operatorsE = {1l = E0, E1, E2, . . .} is it possible to determine whether
a decoding procedure or subsystem exists such thatE is “correctable” (byC), that is, such that the errors
in E do not affect the encoded information? As explained below, the answer is yes and the solution is to
check the condition in the following theorem:

Theorem. E is correctable byC if and only if for all x 6= y in the code and alli, j, it is
true thatEix 6= Ejy. (8)

Observe that the notion of correctability depends on all the errors in the set under consideration and, unlike
detectability, cannot be applied to individual errors.

12



To see that the condition for correctability in Thm.8 is necessary, suppose that for somex 6= y in the
code and somei andj, we havez = Eix = Ejy. If the statez is obtained after an unkown error inE , then
it is not possible to determine whether the original code word wasx or y, because we cannot tell whether
Ei orEj occurred.

To see that the condition for correctability in Thm.8 is sufficient, we assume it and construct a decoding
methodz → dec(z). Suppose that after an unknown error occurred, the statez is obtained. There can be
one and only onex in the code for which someEi(z) ∈ E satisfies the condition thatEi(z)x = z. Thusx
must be the original code word and we can decodez by definingx = dec(z). Note that it is possible for
two errors to have the same effect on some code words. A subsystem identification for this decoding is
given byz ↔ i(z) · dec(z), where the syndrome subsystem’s state space consists of error operator indices
i(z), and the information-carrying system’s consists of the code words dec(z) returned by the decoding.
The subsystem identification thus constructed is not necessarily onto the state space of the subsystem pair.
That is, for different code wordsx, the set ofi(z) such that dec(z) = x can vary and need not be all of
the error indices. As we will show, the subsystem identification is onto the state space of the subsystem
pair in the case of quantum information. It is instructive to check that, when applied to the examples, this
subsystem construction does give a version of the subsystem identifications provided earlier.

It is possible to relate the condition for correctability of an error set to detectability. For simplicity,
assume that eachEi is invertible. (This assumption is satisfied by our examples, but not by error operators
such as “reset bit one to0”.) In this case, the correctability condition is equivalent to the statement that all
productsE−1

j Ei are detectable. To see the equivalence, first suppose that someE−1
j Ei is not detectable.

Then there arex 6= y in the code such thatE−1
j Eix = y. ConsequentlyEix = Ejy and the error set is not

correctable. This argument can be reversed to complete the proof of equivalence.
If the assumption that the errors are invertible does not hold, the relationship between detectability

and correctability becomes more complicated, requiring a generalization of the inverse operation. This
generalization is simpler in the quantum setting.

3 Quantum Error Correction

The principles of error correction outlined in Sec.2 apply to the quantum setting as readily as to the
classical setting. The main difference is that the physical system to be used for representing and processing
information behaves quantum mechanically and the type of information is quantum. The question of how
classical information can be protected in quantum systems is also interesting but will not be discussed
here. We illustrate the principles of quantum error correction by considering quantum versions of the
three examples of Sect.1 and then add a uniquely quantum example with potentially practical applications
in, for example, quantum dot technologies. For an explanation of the basic quantum information concepts
and conventions, see [16].

3.1 Trivial Two-Qubit Example

A quantum version of the two bit example from the previous section consists of two physical qubits, where
the errors randomly apply the identity or one of the Pauli operators to the first qubit. The Pauli operators
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are defined by

1l =

(
1 0
0 1

)
,

σx =

(
0 1
1 0

)
,

σy =

(
0 −i
i 0

)
,

σz =

(
1 0
0 −1

)
.

(9)

Explicitly, the errors have the effect

|||ψ〉〉〉
12
→


1l|||ψ〉〉〉

12
Prob..25

σx
(1)|||ψ〉〉〉

12
Prob..25

σy
(1)|||ψ〉〉〉

12
Prob..25

σz
(1)|||ψ〉〉〉

12
Prob..25

, (10)

where the superscripts in parentheses specify the qubit that an operator acts on. This error model is called
“completely depolarizing” on qubit1. Obviously, a one-qubit state can be stored in the second physical
qubit without being affected by the errors. An encoding operation that implements this observation is

|||ψ〉〉〉 → |||0〉〉〉
1
|||ψ〉〉〉

2
, (11)

which realizes an ideal qubit as a two-dimensional subspace of the physical qubits. This subspace is the
“quantum code” for this encoding. To decode one can discard physical qubit1 and return qubit2, which
is considered a natural subsystem of the physical system. In this case, the identification of syndrome and
information-carrying subsystems is the obvious one associated with the two physical qubits.

3.2 Quantum Repetition Code

The repetition code can be used to protect quantum information in the presence of a restricted error model.
Let the physical system consist of three qubits. Errors act by independently applying, to each qubit, the flip
operatorσx with probability.25. The classical code can be made into a quantum code by the superposition
principle. Encoding one qubit is accomplished by

α|||0〉〉〉+ β|||1〉〉〉 → α|||000〉〉〉+ β|||111〉〉〉. (12)

The associated quantum code is the range of the encoding, that is, the two-dimensional subspace spanned
by the encoded states|||000〉〉〉 and|||111〉〉〉.

As in the classical case, decoding is accomplished by majority logic. However, it must be implemented
carefully to avoid destroying quantum coherence in the stored information. One way to do that is to use
only unitary operations to transfer the stored information to the output qubit. Fig.5 shows a quantum
network that accompishes this task.
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1

2

3 |||ψout〉〉〉

|||000〉〉〉 |||000〉〉〉 |||000〉〉〉 |||00〉〉〉|||0〉〉〉
|||001〉〉〉 |||011〉〉〉 |||111〉〉〉 |||11〉〉〉|||0〉〉〉
|||010〉〉〉 |||010〉〉〉 |||010〉〉〉 |||01〉〉〉|||0〉〉〉
|||100〉〉〉 |||100〉〉〉 |||100〉〉〉 |||10〉〉〉|||0〉〉〉
|||111〉〉〉 |||101〉〉〉 |||001〉〉〉 |||00〉〉〉|||1〉〉〉
|||110〉〉〉 |||110〉〉〉 |||110〉〉〉 |||11〉〉〉|||1〉〉〉
|||101〉〉〉 |||111〉〉〉 |||011〉〉〉 |||01〉〉〉|||1〉〉〉
|||011〉〉〉 |||001〉〉〉 |||101〉〉〉 |||10〉〉〉|||1〉〉〉

FIG. 5: Quantum network for majority logic decoding into the output qubit3. The effect of the quantum
network on the basis states is shown. The top half shows the states with majority0. The decoded qubit is
separated in the last step. The conventions for illustrating quantum networks are explained in [16].

As shown, the decoding network establishes an identification between the three physical qubits and
a pair of subsystems consisting of two qubits representing the syndrome subsystem and one qubit for
the information-carrying subsystem. On the left side of the correspondence, the information-carrying
subsystem is not identifiable with any one (or two) of the physical qubits. Nevertheless it exists there
through the identification.

To obtain a network for encoding, we reverse the decoding network and initialize qubits2, 3 in the
state|||00〉〉〉. Because of the initialization, the Toffoli gate becomes unnecessary. The complete system with
a typical error is shown in Fig.6.
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Encode︷ ︸︸ ︷ Decode︷ ︸︸ ︷

|||ψ〉〉〉

α|||0〉〉〉+ β|||1〉〉〉 →


α|||00〉〉〉|||0〉〉〉
+
β|||00〉〉〉|||1〉〉〉

α|||000〉〉〉
+
β|||111〉〉〉

α|||010〉〉〉
+
β|||101〉〉〉

α|||01〉〉〉|||0〉〉〉
+
β|||01〉〉〉|||1〉〉〉

 = |||01〉〉〉(α|||0〉〉〉+ β|||1〉〉〉)

FIG. 6: Encoding and decoding networks for the quantum repetition code with a typical error. The error
that occurred can be determined from the state of the syndrome subsystem, which consists of the top
two qubits. The encoding is shown as the reverse of the decoding, starting with an initialized syndrome
subsystem. When the decoding is reversed to obtain the encoding, there is an initial Toffoli gate (shown in
gray). Because of the initialization, this gate has no effect and is therefore omitted in an implementation.

As in the case of the classical repetition code, we can protect against cumulative errors without explic-
itly decoding and then re-encoding, which would cause a temporary loss of protection. Instead, one can
find a means for directly resetting the syndrome subsystem to|||00〉〉〉 (thus returning the information to the
code) before the errors happen again. After resetting in this way, the errors in the correctable set have no
effect on the encoded information because they act only on the syndrome subsystem.

Part of the task of designing error-correcting systems is to determine how well the system performs.
An important performance measure is the probability of error. In quantum systems, the probability of
error is intuitively interpreted as the maximum probability with which we can see a result different from
the expected one in any measurement. Specifically, to determine the error, one compares the output|||ψo〉〉〉
of the system to the input|||ψ〉〉〉. An upper bound is obtained if the output is written as a combination of the
input state and an “error” state. For quantum information, combinations are linear combinations (that is,
superpositions). Thus|||ψo〉〉〉 = γ|||ψ〉〉〉 + |||e〉〉〉 (see Fig.7).The probability of error is bounded byε = ||||e〉〉〉|2
(which we call an “error estimate”). In general, there are many different ways of writing the output as
a combination of an acceptable state and an error term. One attempts to choose the combination that
minimizes the error estimate. This choice yields the numberε, for which1 − ε is called the “fidelity”. A
fidelity of 1 means that the output is the same (up to a phase factor) as the input.
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|||e〉〉〉
|||ψo〉〉〉

γ|||ψ〉〉〉

FIG. 7: Representation of an error estimate. Any decomposition of the output state|||ψo〉〉〉 into a “good”
stateγ|||ψ〉〉〉 and an (unnormalized) error term|||e〉〉〉 gives an estimateε = ||||e〉〉〉|2. For pure states, the optimum
estimate is obtained when the error term is orthogonal to the input state. To obtain an error estimate for
mixtures, one can use any representation of the state as a probabilistic combination of pure states and
calculate the probabilistic sum of the pure state errors.

To illustrate error analysis, we calculate the error for the repetition code example for the two initial
states|||0〉〉〉 and 1√

2
(|||0〉〉〉+ |||1〉〉〉).

|||0〉〉〉 encode−→ |||000〉〉〉

−→



.753 : |||000〉〉〉,
.25 ∗ .752 : |||100〉〉〉,
.25 ∗ .752 : |||010〉〉〉,
.25 ∗ .752 : |||001〉〉〉,
.252 ∗ .75 : |||110〉〉〉,
.252 ∗ .75 : |||101〉〉〉,
.252 ∗ .75 : |||011〉〉〉,

.253 : |||111〉〉〉

decode−→



.4219 : |||00〉〉〉 · |||0〉〉〉,

.1406 : |||10〉〉〉 · |||0〉〉〉,

.1406 : |||01〉〉〉 · |||0〉〉〉,

.1406 : |||11〉〉〉 · |||0〉〉〉,

.0469 : |||11〉〉〉 · |||1〉〉〉,

.0469 : |||01〉〉〉 · |||1〉〉〉,

.0469 : |||10〉〉〉 · |||1〉〉〉,

.0156 : |||00〉〉〉 · |||1〉〉〉

(13)

The final state is a mixture consisting of four correctly decoded components and four incorrectly decoded
ones. The probability of each state in the mixture is shown before the colon. The incorrectly decoded
information is orthogonal to the encoded information, and its probability is0.1563, an improvement over
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the one-qubit error-probability of0.25. The second state behaves quite differently:

1√
2

(|||0〉〉〉+ |||1〉〉〉) encode−→ 1√
2

(|||000〉〉〉+ |||111〉〉〉)

−→


...

.252 ∗ .75 : 1√
2
(|||110〉〉〉+ |||001〉〉〉) ,

...

decode−→


...

.0469 : 1√
2
|||11〉〉〉 · (|||1〉〉〉+ |||0〉〉〉) ,

...

(14)

Not all error events have been shown, but in each case it can be seen that the state is decoded correctly, so
the error is0. This shows that the error probability can depend significantly on the initial state. To remove
this dependence and give a state independent error quantity, one can use the “worst-case”, the “average”
or the “entanglement” error. See Sect.4.2.

3.3 Quantum Code for a Cyclic System

The shift operators introduced earlier act as permutations of the seven states of the cyclic system. They
can therefore be extended to unitary operators on a seven-state cyclic quantum system with logical basis
|||0〉〉〉, |||1〉〉〉, |||2〉〉〉, |||3〉〉〉, |||4〉〉〉, |||5〉〉〉, |||6〉〉〉. The error model introduced earlier makes sense here without modification,
as does the encoding. The subsystem identification now takes the six-dimensional subspace spanned by
|||0〉〉〉, . . . |||5〉〉〉 to a pair consisting of a three-state system with basis|||−1〉〉〉, |||0〉〉〉, |||1〉〉〉 and a qubit. The identifica-
tion of Eq.6 extends linearly to a unitary subsystem identification. The procedure for decoding is modified
as follows: First, a measurement is performed to determine whether the state is in the six-dimensional sub-
space or not. If it is, the identification is used to extract the qubit. Here is an outline of what happens when
the state 1√

2
(|||0〉〉〉+ |||1〉〉〉) is encoded:

1√
2

(|||0〉〉〉+ |||1〉〉〉) encode−→ 1√
2

(|||1〉〉〉+ |||4〉〉〉)

−→


...

.05641e−4 : 1√
2
(|||3〉〉〉+ |||6〉〉〉) ,

...

detect−→


...

.001 :

{
.5 : fail
.5 : |||3〉〉〉

...
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decode−→


...

.0005 : fail

.0005 : |||−1〉〉〉 · |||1〉〉〉
...

=


...

.0005 : fail

.0005 : |||−1〉〉〉 ·
(

1
2
(|||0〉〉〉+ |||1〉〉〉) + 1

2
(−|||0〉〉〉+ |||1〉〉〉)

)
...

(15)

A “good” state was separated from the output in the case that is shown. The leftover error term has
probability amplitude.0005∗((1/2)2 +(1/2)2) = .00025, which contributes to the total error (not shown).

3.4 Three Quantum Spin-1/2 Particles

Quantum physics provides a rich source of systems with many opportunities for representing and protect-
ing quantum information. Sometimes it is possible to encode information in such a way that it is protected
from the errors indefinitely, without intervention. An example is the trivial two-qubit system discussed
before. Whenever error protection without intervention is possible, there is an information-carrying sub-
system such that errors act only on the associated syndrome subsystem regardless of the current state. An
information-carrying subsystem with this property is called “noiseless”. A physically motivated exam-
ple of a one-qubit noiseless subsystem can be found in three spin-1

2
particles with errors due to random

fluctuations in an external field.
A spin-1

2
particle’s state space is spanned by two states|||↑〉〉〉 and|||↓〉〉〉. Intuitively, these states correspond

to the spin pointing “up” (|||↑〉〉〉) or “down” (|||↓〉〉〉) in some chosen reference frame. The state space is therefore
the same as that of a qubit and we can make the identifications|||↑〉〉〉 ↔ |||0〉〉〉 and|||↓〉〉〉 ↔ |||1〉〉〉. An external
field causes the spin to “rotate” according to an evolution of the form

|||ψt〉〉〉 = e−i(uxσx+uyσy+uzσz)t/2|||ψ〉〉〉. (16)

The vector~u = (ux, uy, uz) characterizes the direction of the field and the strength of the spin’s interaction
with the field. This situation arises, for example, in nuclear magnetic resonance with spin-1

2
nuclei, where

the fields are magnetic fields (see [17]).
Now consider the physical system composed of three spin-1

2
particles with errors acting as identical

rotations of the three particles. Such errors occur if they are due to a uniform external field that fluctuates
randomly in direction and strength. The evolution caused by a uniform field is given by

|||ψt〉〉〉123 = e−i(uxσx
(1)+uyσy

(1)+uzσz
(1))t/2e−i(uxσx

(2)+uyσy
(2)+uzσz

(2))t/2e−i(uxσx
(3)+uyσy

(3)+uzσz
(3))t/2|||ψ〉〉〉

123

= e−i(ux(σx
(1)+σx

(2)+σx
(3))+uy(σy

(1)+σy
(2)+σy

(3))+uz(σz
(1)+σz

(2)+σz
(3)))t/2|||ψ〉〉〉

123

= e−i(uxJx+uyJy+uzJz)t|||ψ〉〉〉
123
, (17)

with Ju =
(
σu

(1) + σu
(2) + σu

(3)
)
/2 for u = x, y andz. We can exhibit the error operators arising from

a uniform field in a compact form by defining~J = (Jx, Jy, Jz) and~v = (ux, uy, uz)t. Then the error
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operators are given byE(~v) = e−i~v· ~J , where the dot product in the exponent is calculated like the standard
vector dot product.

For a one-qubit noiseless subsystem, the key property of the error model is that the errors are symmetric
under any permutation of the three particles. A permutation of the particles acts on the particles’ state
space by permuting the labels in the logical states. For example, the permutationπ that swaps the first two
particles acts on logical states as

π|||a〉〉〉
1
|||b〉〉〉

2
|||c〉〉〉

3
= |||a〉〉〉

2
|||b〉〉〉

1
|||c〉〉〉

3
= |||b〉〉〉

1
|||a〉〉〉

2
|||c〉〉〉

3
. (18)

To say that the errors are symmetric under particle permutations means that each errorE satisfiesπ−1Eπ =
E, or equivalentlyEπ = πE (E “commutes” withπ). To see that this condition is satisfied, write

π−1E(~v)π = π−1e−i~v· ~Jπ

= e−iπ−1(~v· ~J)π

= e−i~v·(π−1 ~Jπ). (19)

If π permutes particlea to b, thenπ−1σu
(a)π = σu

(b). It follows that π−1 ~Jπ = ~J . This expression
shows that the errors commute with the particle permutations and therefore cannot distinguish between
the particles. An error model satisfying this property is called a “collective” error model.

If a noiseless subsystem exists, then it suffices to learn the symmetries of the error model to construct
the subsystem. This procedure is explained in Sect.6.2. For the three spin-1

2
system, the procedure results

in a one-qubit noiseless subsystem protected from all collective errors. We first exhibit the subsystem
identification and then discuss its properties to explain why it is noiseless. As in the case of the seven-
state cyclic system, the identification involves a proper subspace of the physical system’s state space. The
subsystem identification involves a four-dimensional subspace and is defined by the following correspon-
dence:

1√
3

(
|||↓〉〉〉

1
|||↑〉〉〉

2
|||↑〉〉〉

3
+ e−i2π/3|||↑〉〉〉

1
|||↓〉〉〉

2
|||↑〉〉〉

3
+ ei2π/3|||↑〉〉〉

1
|||↑〉〉〉

2
|||↓〉〉〉

3

)
↔ |||↑〉〉〉 · |||0〉〉〉

1√
3

(
|||↓〉〉〉

1
|||↑〉〉〉

2
|||↑〉〉〉

3
+ ei2π/3|||↑〉〉〉

1
|||↓〉〉〉

2
|||↑〉〉〉

3
+ e−i2π/3|||↑〉〉〉

1
|||↑〉〉〉

2
|||↓〉〉〉

3

)
↔ |||↑〉〉〉 · |||1〉〉〉

− 1√
3

(
|||↑〉〉〉

1
|||↓〉〉〉

2
|||↓〉〉〉

3
+ e−i2π/3|||↓〉〉〉

1
|||↑〉〉〉

2
|||↓〉〉〉

3
+ ei2π/3|||↓〉〉〉

1
|||↓〉〉〉

2
|||↑〉〉〉

3

)
↔ |||↓〉〉〉 · |||0〉〉〉

− 1√
3

(
|||↑〉〉〉

1
|||↓〉〉〉

2
|||↓〉〉〉

3
+ ei2π/3|||↓〉〉〉

1
|||↑〉〉〉

2
|||↓〉〉〉

3
+ e−i2π/3|||↓〉〉〉

1
|||↓〉〉〉

2
|||↑〉〉〉

3

)
↔ |||↓〉〉〉 · |||1〉〉〉

(20)

The state labels for the syndrome subsystem (before the dot in the expressions on the right side) identify
it as a spin-1

2
subsystem. In particular, it responds to the errors caused by uniform fields in the same

way as the physical spin-1
2

particles. This behavior is caused by2Ju acting as theu-Pauli operator on the
syndrome subsystem. To confirm this property, we apply2Ju to the logical states of Eq.20 for u = z, x.
The property foru = y then follows becauseiσy = σzσx. Consider2Jz. Each of the four states shown in
Eq.20 is an eigenstate of2Jz. For example, the physical state for|||↑〉〉〉 · |||0〉〉〉 is a superposition of states with
two spins up (↑) and one spin down (↓). The eigenvalue of such a state with respect to2Jz is the difference
∆ between the number of spins that are up and down. Thus,2Jz|||↑〉〉〉 · |||0〉〉〉 = |||↑〉〉〉 · |||0〉〉〉. The difference is also
∆ = 1 for |||↑〉〉〉 · |||1〉〉〉 and∆ = −1 for |||↓〉〉〉 · |||0〉〉〉 and|||↓〉〉〉 · |||1〉〉〉. Therefore,2Jz acts as thez-Pauli operator on
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the syndrome subsystem. To confirm this behavior for2Jx, we compute2Jx|||↑〉〉〉 · |||0〉〉〉.

2Jx|||↑〉〉〉 · |||0〉〉〉 = 2Jx
1√
3

(
|||↓〉〉〉

1
|||↑〉〉〉

2
|||↑〉〉〉

3
+ e−i2π/3|||↑〉〉〉

1
|||↓〉〉〉

2
|||↑〉〉〉

3
+ ei2π/3|||↑〉〉〉

1
|||↑〉〉〉

2
|||↓〉〉〉

3

)
= 1√

3

(
σx

(1) + σx
(2) + σx

(3)
)
|||↓〉〉〉

1
|||↑〉〉〉

2
|||↑〉〉〉

3

+e−i2π/3 1√
3

(
σx

(1) + σx
(2) + σx

(3)
)
|||↑〉〉〉

1
|||↓〉〉〉

2
|||↑〉〉〉

3

+ ei2π/3 1√
3

(
σx

(1) + σx
(2) + σx

(3)
)
|||↑〉〉〉

1
|||↑〉〉〉

2
|||↓〉〉〉

3

= 1√
3

(
|||↑〉〉〉

1
|||↑〉〉〉

2
|||↑〉〉〉

3
+ |||↓〉〉〉

1
|||↓〉〉〉

2
|||↑〉〉〉

3
+ |||↓〉〉〉

1
|||↑〉〉〉

2
|||↓〉〉〉

3

)
+e−i2π/3 1√

3

(
|||↓〉〉〉

1
|||↓〉〉〉

2
|||↑〉〉〉

3
+ |||↑〉〉〉

1
|||↑〉〉〉

2
|||↑〉〉〉

3
+ |||↑〉〉〉

1
|||↓〉〉〉

2
|||↓〉〉〉

3

)
+ ei2π/3 1√

3

(
|||↓〉〉〉

1
|||↑〉〉〉

2
|||↓〉〉〉

3
+ |||↑〉〉〉

1
|||↓〉〉〉

2
|||↓〉〉〉

3
+ |||↑〉〉〉

1
|||↑〉〉〉

2
|||↑〉〉〉

3

)
= 1√

3

(
1 + e−i2π/3 + ei2π/3

)
|||↑〉〉〉

1
|||↑〉〉〉

2
|||↑〉〉〉

3

+ 1√
3

(
e−i2π/3 + ei2π/3

)
|||↑〉〉〉

1
|||↓〉〉〉

2
|||↓〉〉〉

3

+ 1√
3

(
1 + ei2π/3

)
|||↓〉〉〉

1
|||↑〉〉〉

2
|||↓〉〉〉

3

+ 1√
3

(
1 + e−i2π/3

)
|||↓〉〉〉

1
|||↓〉〉〉

2
|||↑〉〉〉

3

= − 1√
3

(
|||↑〉〉〉

1
|||↓〉〉〉

2
|||↓〉〉〉

3
+ e−i2π/3|||↓〉〉〉

1
|||↑〉〉〉

2
|||↓〉〉〉

3
+ ei2π/3|||↓〉〉〉

1
|||↓〉〉〉

2
|||↑〉〉〉

3

)
= |||↓〉〉〉 · |||0〉〉〉. (21)

Similarly, one can check that, for the other logical states, the effect of2Jx is to flip the orientation of the
syndrome spin. The fact that the subsystem identified in Eq.20 is noiseless now follows from the fact that
the errorsE(~v) are exponentials of sums of the syndrome spin operatorsJu. The errors therefore act as
the identity on the information-carrying subsystem.

The noiseless qubit supported by three spin-1
2

particles with collective errors is another example in
which the subsystem identification does not involve the whole state space of the system. In this case, the
errors of the error model cannot remove amplitude from the subspace. As a result, if we detect an error,
that is, if we find that the system’s state is in the orthogonal complement of the subspace of the subsystem
identification, we can deduce that either the error model is inadequate, or we introduced errors in the
manipulations required for transferring information to the noiseless qubit.

The noiseless subsystem of three spin-1
2

particles can be physically motivated by an analysis of quan-
tum spin numbers. The physical motivation is outlined in Fig.8.
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FIG. 8: One noiseless qubit from three spin-1
2

particles. The left side shows the three particles, with errors
caused by fluctuations in a uniform magnetic field depicted by a noisy coil. The spin along directionu
(u = x, y, z) can be measured and its expectation is given by〈〈〈ψ|||Ju|||ψ〉〉〉, where|||ψ〉〉〉 is the quantum state
of the particles andJu is the total spin observable along theu-axis given by the half-sum of theu-Pauli
matrices of the particles as defined in the text. The squared magnitude of the total spin is given by the
expectation of the observableJ2 = ~J · ~J = J2

x + J2
y + J2

z . The observableJ2 commutes with the

Ju and therefore also with the errorsE(~v) = e−i~v· ~J caused by uniform field fluctuations. This can be
verified directly, or one can note thatE(~v) acts on~J as a rotation in three dimensions, and as one would
expect, such rotations preserve the “squared length”J2 of ~J . It now follows that the eigenspaces ofJ2

are invariant under the errors, and therefore that the eigenspaces are good places to look for noiseless
subsystems. The eigenvalues ofJ2 are of the formj(j + 1), wherej is the spin quantum number of the
corresponding eigenspace. There are two eigenspaces, one with spinj = 1

2
and the other with spinj = 3

2
.

The figure shows a thought experiment that involves passing the three-particle system through a type of
beam splitter (BS) or Stern-Gerlach apparatus sensitive toJ2. Using such a beam splitter, the system of
particles can be made to go in one of two directions depending onj. In the figure, if the system’s state is
in the the spin-3

2
subspace, it passes through the beam splitter; if it is in the spin-1

2
subspace, the system

is reflected up. It can be shown that the subspace withj = 3
2

is four-dimensional and spanned by the
states that are symmetric under particle permutations. Unfortunately, there is no noiseless subsystem in
this subspace (see Sect.6.2). The spin-1

2
subspace is also four dimensional and spanned by the states

in Eq. 20. The spin-1
2

property of the subspace implies that the spin operatorsJu act in a way that is
algebraically identical to the wayσu/2 acts on a single spin-1

2
particle. This property implies the existence

of the syndrome subsystem introduced in the text. Conventionally, the spin-1
2

subspace is thought of as
consisting of two orthogonal two-dimensional subspaces each behaving like a spin-1

2
with respect to the

Ju. This choice of subspaces is not unique, but by associating them with two logical states of a noiseless
qubit, one can obtain the subsystem identification of Eq.20. Some care needs to be taken to ensure that the
noiseless qubit operators commute with theJu, as they should (see Sect.6.2). In the thought experiment,
one can imagine unitarily rotating the system emerging in the upper path to make explicit the syndrome
spin-1

2
subsystem and the noiseless qubit with which it must be paired. The result of this rotation is shown.
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4 Error Models

We have seen several models of physical systems and errors in the examples of the previous sections. Most
physical systems under consideration for QIP consist of particles or degrees of freedom that are spatially
localized, a feature reflected in the error models that are usually investigated. Because we also expect
the physically realized qubits to be localized, the standard error models deal with quantum errors that act
independently on different qubits. Logically realized qubits, such as those implemented by subsystems
different from the physically obvious ones, may have more complicated residual error behaviors.

4.1 The Standard Error Models for Qubits

The most investigated error model for qubits consists of “independent, depolarizing errors”. This model
has the effect of completely depolarizing each qubit independently with probabilityp (see Eq.10). For
one qubit, the model is the least biased in the sense that it is symmetric under rotations. As a result, every
state of the qubit is equally affected. Independent depolarizing errors are considered to be the quantum
analogue of the classical independent bit flip error model.

Depolarizing errors are not typical for physically realized qubits. However, given the ability to con-
trol individual qubits, it is possible to enforce the depolarizing model (see below). Consequently, error-
correction methods designed to control depolarizing errors apply to all independent error models. Never-
theless, it is worth keeping in mind that given detailed knowledge of the physical errors, a special purpose
method is usually better than one designed for depolarizing errors. We therefore begin by showing how
one can think about arbitrary error models.

There are several different ways of describing errors affecting a physical systemS of interest. For
most situations, in particular if the initial state ofS is pure, errors can be thought of as being the result
of coupling to an initially independent environment for some time. Because of this coupling, the effect
of error can always be represented by the process of adjoining an environmentE in some initial state|||0〉〉〉

E

to the arbitrary state|||ψ〉〉〉
S

of S, followed by a unitary coupling evolutionU (ES) acting jointly onE andS.
Symbolically, the process can be written as the map

|||ψ〉〉〉
S
→ U (E S)|||0〉〉〉

E
|||ψ〉〉〉

S
. (22)

Choosing an arbitrary orthonormal basis consisting of the states|||e〉〉〉
E

for the state space of the environment,
the process can be rewritten in the form:

|||ψ〉〉〉
S
→ 1l(E)U (ES)|||0〉〉〉

E
|||ψ〉〉〉

S

=

(∑
e

|||e〉〉〉
E

E〈〈〈e|||

)
U (E S)|||0〉〉〉

E
|||ψ〉〉〉

S

=
∑

e

|||e〉〉〉
E

(
E〈〈〈e|||U (E S)|||0〉〉〉

E

)
|||ψ〉〉〉

S

=
∑

e

|||e〉〉〉
E
Ae

(S)|||ψ〉〉〉
S
, (23)
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where the last step defines operatorsAe
(S) acting onS byAe

(S) = E〈〈〈e|||U (ES)|||0〉〉〉
E
. The expression

∑
e |||e〉〉〉EAe

(S)

is called an “environment labeled operator”. The unitarity condition implies that
∑

eA
†
eAe = 1l (with sys-

tem labels omitted). The environment basis|||e〉〉〉
E

need not represent any physically meaningful choice of
basis of a real environment. For the purpose of error analysis, the states|||e〉〉〉

E
are formal states that “label”

the error operatorsAe. One can use an expression of the form shown in Eq.23 even when the|||e〉〉〉 are not
normalized or orthogonal, keeping in mind that as a result, the identity implied by the unitarity condition
changes.

Note that the state on the right side of Eq.23 representing the effect of the errors is correlated with
the environment. This means that after removing (or “tracing over”) the environment, the state ofS is
usually mixed. Instead of introducing an artificial environment, we can also describe the errors by using
the density operator formalism for mixed states. Defineρ = |||ψ〉〉〉

S

S〈〈〈ψ|||. The effect of the errors on the density
matrixρ is given by the transformation

ρ→
∑

e

AeρA
†
e. (24)

This is the “operator sum” formalism [18].
The two ways of writing the effects of errors can be applied to the depolarizing-error model for one

qubit. As an environment-labeled operator, depolarization with probabilityp can be written as√
1− p|||0〉〉〉

E
1l +

√
p

2

(
|||1〉〉〉

E
1l + |||x〉〉〉

E
σx + |||y〉〉〉

E
σy + |||z〉〉〉

E
σz

)
, (25)

where we introduced five abstract, orthonormal environment states to label the different events. In this
case, one can think of the model as applying no error with probability1 − p, or completely depolariz-
ing the qubit with probabilityp. The latter event is represented by applying one of1l, σx, σy or σz with
equal probabilityp/4. To be able to think of the model as randomly applied Pauli matrices, it is crucial
that the environment states labeling the different Pauli matrices be orthogonal. The square roots of the
probabilities appear in the operator because in an environment-labeled operator, it is necessary to give
quantum amplitudes. Environment labeled operators are useful primarily because of their great flexibility
and redundancy.

In the operator sum formalism, depolarization with probabilityp transforms the input density matrixρ
as

ρ → (1− p)ρ+
p

4
(1lρ1l + σxρσx + σyρσy + σzρσz)

= (1− 3p/4)ρ+
p

4
(σxρσx + σyρσy + σzρσz) . (26)

Because the operator sum formalism has less redundancy, it is easier to tell when two error effects are
equivalent.

In the remainder of this section, we discuss how one can use active intervention to simplify the error
model. To realize this simplification, we intentionally randomize the qubit so that the environment cannot
distinguish between the different “axes” defined by the Pauli spin matrices. Here is a simple randomization
that actively converts an arbitrary error model for a qubit into one that consists of randomly applying Pauli
operators according to some distribution. The distribution is not necessarily uniform so the new error
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model is not yet depolarizing. Before the errors act, apply a random Pauli operatorσu (u = 0, x, y, z,
σ0 = 1l). After the errors act apply the inverse of that operator,σ−1

u = σu; then “forget” which operator was
applied. This randomization method is called “twirling” [19]. To understand twirling, we use environment
labeled operators to demonstrate some of the techniques useful in this context. The sequence of actions
implementing twirling can be written as follows (omitting labels forS):

|||ψ〉〉〉 → 1
2

∑
u |||u〉〉〉Cσu|||ψ〉〉〉 apply a randomσu, rememberingu with the help of the systemC.

→
∑

e |||e〉〉〉E
1
2

∑
u |||u〉〉〉CAeσu|||ψ〉〉〉 errors act.

→
∑

e |||e〉〉〉E
1
2

∑
u |||u〉〉〉CσuAeσu|||ψ〉〉〉 applyσu = σ−1

u .
→

∑
eu |||eu〉〉〉EC

1
2
σuAeσu|||ψ〉〉〉 forget whichu was used by absorbing its memory inE.

(27)
The systemC that was artificially introduced to carry the memory ofumay be a classical memory because
there is no need for coherence between different|||u〉〉〉

C
.

To determine the equivalent random Pauli operator error model, it is necessary to rewrite the total
effect of the procedure using an environment labeled sum involving orthogonal environment states and
Pauli operators. To do so, expressAe as a sum of the Pauli operators,Ae =

∑
v αevσv, using the fact that

theσv are a linear basis for the space of one-qubit operators. Recall the fact thatσu anticommutes with
σv if 0 6= u 6= v 6= 0. Thusσuσvσu = (−1)〈v,u〉σv, where〈v, u〉 = 1 if 0 6= u 6= v 6= 0 and〈v, u〉 = 0
otherwise. We can now rewrite the last expression of Eq.27as follows:∑

eu

|||eu〉〉〉
EC

1

2
σuAeσu|||ψ〉〉〉 =

∑
eu

|||eu〉〉〉
EC

1

2
σu

∑
v

αevσvσu|||ψ〉〉〉

=
∑

v

(∑
eu

1

2
αev(−1)〈v,u〉|||eu〉〉〉

EC

)
σv|||ψ〉〉〉. (28)

It can be checked that the states1
2

∑
u(−1)〈v,u〉|||eu〉〉〉

EC
are orthonormal for differente andv. As a result the

states
∑

eu
1
2
αev(−1)〈v,u〉|||eu〉〉〉

EC
are orthogonal for differentv and have probability (square norm) given by

pv =
∑

e |αev|2. Introducing
√
pv|||ṽ〉〉〉

EC
=
∑

eu
1
2
αev(−1)〈v,u〉|||eu〉〉〉

EC
, we can write the sum of Eq.28as

∑
v

(∑
eu

1

2
αev(−1)〈v,u〉|||eu〉〉〉

EC

)
σv|||ψ〉〉〉 =

∑
v

√
pv|||ṽ〉〉〉

EC
σv|||ψ〉〉〉, (29)

showing that the twirled error model behaves like randomly applied Pauli matrices withσv applied with
probability pv. It is a recommended exercise to reproduce the above argument using the operator sum
formalism.

To obtain the standard depolarizing error model with equal probabilities for the Pauli matrices, it
is necessary to strengthen the randomization procedure by applying a random memberU of the group
generated by the90◦ rotations around thex, y andz axes before the error and then undoingU by applying
U−1.

Randomization can be used to transform any one-qubit error model into the depolarizing error model.
This explains why the depolarizing model is so useful for analyzing error correction techniques in sit-
uations in which errors act independently on different qubits. However, in many physical situations, the
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independence assumptions are not satisfied. For example, errors from common internal couplings between
qubits are generally pairwise correlated to first order. In addition, the operations required to manipulate
the qubits and to control the encoded information act on pairs at a time, which tends to spread even single
qubit errors. Still, in all these cases, the primary error processes are local. This means that there usually
exists an environment labeled sum expression for the total error process in which the amplitudes associ-
ated with errors acting simultaneously atk locations in time and space decrease exponentially withk. In
such cases, error-correction methods that handle all or most errors involving sufficiently few qubits are
still applicable.

4.2 Quantum Error Analysis

One of the most important consequences of the subsystems interpretation of encoding quantum informa-
tion in a physical system is that the encoded quantum information can be error-free even though errors
have severely changed the state of the physical system. Almost trivially, any error operator acting only
on the syndrome subsystem has no effect on the quantum information. The goal of error correction is
to actively intervene and maintain the syndrome subsystem in states where the dominant error operators
continue to have little effect on the information of interest. An important issue in analyzing error correc-
tion methods is to estimate the residual error in the encoded information. A simple example of how that
can be done was discussed for the quantum repetition code. The same ideas can be applied in general.
Let S be the physical system in which the information is encoded and|||ψ〉〉〉

S
an initial state containing such

information with the syndrome subsystem appropriately prepared. Errors and error-correcting operations
modify the state. The new state can be expressed using environment labeling as

∑
e |||e〉〉〉EAe

(S)|||ψ〉〉〉
S
. In view

of the partitioning into information-carrying and syndrome subsystems, “good” states|||e〉〉〉
E

are those states

for whichAe
(S) acts only on the syndrome subsystem given that the syndrome has been prepared. The

remaining states|||e〉〉〉
E

form the set of “bad” states,B. The error probabilitype can be bounded from above
by

pe ≤

∣∣∣∣∣∑
e∈B

|||e〉〉〉
E
Ae

(S)|||ψ〉〉〉
S

∣∣∣∣∣
2

≤

(∑
e∈B

||||e〉〉〉
E
| |Ae

(S)|1

)2

, (30)

where|A|1 = maxφ 〈〈〈φ|||A|||φ〉〉〉, the maximum being taken over normalized states. The second inequality
usually leads to a gross overestimate but is independent of the encoded information and often suffices for
obtaining good results. Because the environment-labeled sum is not unique, a goal of the representation
of the errors acting on the system is to use “good” operators to the largest extent possible. The flexibility
of these error-expansions makes them very useful for analyzing error models in conjunction with error-
correction methods.

In principle, we can obtain better expressions forpe by calculating the density matrixρ of the state of
the subsystem containing the desired quantum information. This calculation involves “tracing over” the
syndrome subsystem. The matrixρ can then be compared to the intended state. If the intended state is pure,
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given by|||φ〉〉〉, the probability of error is given by1−〈〈〈φ|||ρ|||φ〉〉〉, which is the probability that a measurement
that distinguishes between|||φ〉〉〉 and its orthogonal complement fails to detect|||φ〉〉〉. The quantity〈〈〈φ|||ρ|||φ〉〉〉 is
called the “fidelity” of the stateρ.

For applications to communication, the goal is to be able to reliably transmit arbitrary states through
a communication channel, which may be physical or realized via an encoding/decoding scheme. It is
therefore important to characterize the reliability of the channel independent of the information transmit-
ted. Eq.30 can be used to obtain state-independent bounds on the error probability but does not readily
provide a single measure of reliability. One way to quantify the reliability is to identify the error of the
channel with the average errorεa over all possible input states. The reliability is then given by the average
fidelity 1− εa Another elegant way appropriate for QIP is to use the “entanglement fidelity” [20]. Entan-
glement fidelity measures the error when the input is maximally entangled with an identical “reference”
system. In this process, the reference system is imagined to be untouched, so that the state of the reference
system together with the output state can be compared to the original entangled state. For a one-qubit
channel labeledS, the reference system is a qubit, which we label withR. An initial, maximally entangled
state is

|||B〉〉〉 =
1√
2

(
|||0〉〉〉

R
|||0〉〉〉

S
+ |||1〉〉〉

R
|||1〉〉〉

S

)
. (31)

The reference qubit is assumed to be perfectly isolated and not affected by any errors. The final stateρ(RS)

is compared to|||B〉〉〉, which gives the entanglement fidelity according to the formulafe = 〈〈〈B|||ρ(RS)|||B〉〉〉.
The entanglement error isεe = 1 − fe. It turns out that this definition does not depend on the choice of
maximally entangled state. Fortunately, the entanglement error and the average errorεa are related by a
linear expression:

εa =
2

3
εe. (32)

For k-qubit channels, the constant2
3

is replaced by2k/(2k + 1). Experimental measurements of these
fidelities do not require the reference system. There are simple averaging formulas to express them in
terms of the fidelities for transmitting each of a sufficiently large set of pure states. An example of the
experimental determination of the entanglement fidelity when the channel is realized by error-correction
is provided in [21].

5 From Quantum Error Detection to Error Correction

In the independent depolarizing error model with small probabilityp of depolarization, the most likely
errors are those that affect a small number of qubits. That is, if we define the “weight” of a product of
Pauli operators to be the number of qubits affected, the dominant errors are those of small weight. Because
the probability of a non-identity Pauli operator is3p/4 (see Eq.25), one expects about3p

4
n of n qubits

to be changed. As a result, good error-correcting codes are considered to be those for which all errors
of weight≤ e ' 3p

4
n can be corrected. It is desirable thate have a high “rate”, which means that it is a

large fraction of the total number of qubits,n (the “length” of the code). Combinatorially, good codes are
characterized by a high minimum distance, a concept that arises naturally in the context of error-detection.
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5.1 Quantum Error Detection

LetC be a quantum code, that is, a subspace of the state space of a quantum system. LetP be the operator
that projects ontoC, andP⊥ = 1l − P the one that projects onto the orthogonal complement. Then the
pairP, P⊥ is associated with a measurement that can be used to determine whether a state is in the code
or not. If the given state is|||ψ〉〉〉, then the result of the measurement isP |||ψ〉〉〉 with probability |P |||ψ〉〉〉|2 and
P⊥|||ψ〉〉〉 otherwise. As in the classical case, an error-detection scheme consists of preparing the desired
state|||ψi〉〉〉 ∈ C, transmitting it through, say, a quantum channel, then measuring whether the state is still
in the code, accepting the state if it is, and rejecting it otherwise. We say thatC detects error operator
E if states accepted afterE had acted are unchanged except for an overall scale. Using the projection
operators, this is the statement that for every state|||ψi〉〉〉 ∈ C, PE|||ψi〉〉〉 = λE|||ψi〉〉〉. BecauseP |||ψ〉〉〉 is in the
code for every|||ψ〉〉〉, it follows thatPEP |||ψ〉〉〉 = λEP |||ψ〉〉〉. Therefore, a characterization of detectability is
gven by:

Theorem. E is detectable byC if and only if PEP = λEP for someλE. (33)

It is not difficult to see that a second characterization is given by:

Theorem. E is detectable byC if and only if for all |||ψ〉〉〉, |||φ〉〉〉 ∈ C, 〈〈〈ψ|||E|||φ〉〉〉 = λE〈〈〈ψ|||φ〉〉〉
for someλE. (34)

A third characterization, which we state without proof, is obtained by taking the condition for classical
detectability in Thm.7 and replacing “6=” by “orthogonal to”:

Theorem. E is detectable byC if and only if for all |||φ〉〉〉, |||ψ〉〉〉 in the code with|||φ〉〉〉 orthog-
onal to|||ψ〉〉〉, E|||φ〉〉〉 is orthogonal to|||ψ〉〉〉. (35)

For a given codeC, the set of detectable errors is closed under linear combinations. That is, ifE1 and
E2 are both detectable, then so isαE1 +αE2. This useful property implies that to check detectability, one
has to consider only the elements of a linear basis for the space of errors of interest.

Considern qubits with independent depolarizing errors. A robust error-detecting code should detect
as many of the small weight errors as possible. This requirement motivates the definition of “minimum
distance”: The codeC has minimum distanced if the smallest-weight product of Pauli operatorsE for
whichC does not detectE is d. The notion comes from classical codes for bits, where a set of code words
C ′ has minimum distanced if the smallest number of flips required to change one code word inC ′ into
another one inC ′ is d. For example, the repetition code for three bits has minimum distance3. Note
that the minimum distance for the quantum repetition code is one: Applyingσz

(1) preserves the code and
changes the sign of|||111〉〉〉 but not of|||000〉〉〉. As a result,σz

(1) is not detectable. The notion of minimum
distance can be generalized for error models with specified “first order” error operators [22]. In the case
of depolarizing errors, the first order error operators are single qubit Pauli matrices, which are the errors
of weight one.

5.2 Quantum Error Correction

Let E = {E0 = 1l, E1, . . .} be the set of errors that we wish to be able to correct. When is there a decoding
procedure for the codeC such that all errors inE are corrected? When such a decoding procedure exists,
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we say thatE is “correctable” (byC). A situation in which correctability ofE is apparent occurs when the
errorsEi are unitary operators satisfying the condition thatEiC are mutually orthogonal subspaces. The
repetition code has this property for the set of errors consisting of the identity and Pauli operators acting
on a single qubit. In this situation, the procedure for decoding is to first make a projective measurement to
determine which of the subspacesEiC the state is in, and then to apply the inverse of the error operator,
E†

i . This situation is not far from the generic one. One characterization of correctability is in the following
theorem:

Theorem. E is correctable if and only if there is a linear transformation of the setE
such that the operatorsE ′

i in the new set satisfy the following properties: (1) TheE ′
iC are

mutually orthogonal, and (2)E ′
i restricted toC is proportional to a restriction toC of a

unitary operator. (36)

To relate this characterization to detectability, note that the two properties imply that(E ′
i)
†E ′

jC is orthog-
onal toC if i 6= j, and(E ′

i)
†E ′

i restricted toC is proportional to the identity onC. In other words, the
(E ′

i)
†E ′

j are detectable. This detectability condition applied to the original error set constitutes a second
characterization of correctability, given in the next theorem:

Theorem. E is correctable if and only if the operators in the setE†E = {E†
1E2 : Ei ∈ E}

are detectable. (37)

Before explaining the characterizations of correctability, we consider the situation ofn qubits, where
the characterization by detectability (37) leads to a useful relationship between minimum distance and
correctability of low weight errors:

Theorem. If a code onn qubits has a minimum distance of at least2e+ 1, then the set of
errors of weight at moste is correctable. (38)

This theorem follows by observing that the weight ofE†
1E2 is at most the sum of the weights of theEi.

As a result of this observation, the problem of finding good ways of correcting all errors up to a maximum
weight reduces to that of constructing codes with sufficiently high minimum distance. Thus questions
such as “what is the maximum dimension of a code of minimum distanced on n qubits?” are of great
interest. As in the case of classical coding theory this problem appears to be very difficult in general.
Answers are known for smalln [6] and there are asymptotic bounds [23]. Of course, for achieving low
error probabilities, it is not necessary to correct all errors of weight≤ e, just almost all such errors.
For example, the concatenated codes used for fault-tolerant quantum computation achieve this goal (see
Sec.7).

For the remainder of this section we explain the characterizations of correctability. Using the condi-
tions for detectability from the previous section, the condition for correctability in Thm.37 is equivalent
to

PE†
iEjP = λijP (39)

This condition is preserved under a linear change of basis forE . That is, ifA is any invertible matrix with
coefficientsaij, we can define new error operatorsDk =

∑
iEiaik. For theDk, the left side of Eq.39 is

PD†
kDlP = P

(∑
ij

āikE
†
iEjajl

)
P
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=
∑
ij

āikajlλijP

=
(
A†ΛA

)
kl
P, (40)

whereΛ is the matrix formed from theλij. Using the fact thatΛ is a positive semidefinite matrix (that

is, for all x, x†Λx ≥ 0 andΛ† = Λ), we can chooseA such thatA†ΛA is of the form

(
1l 0
0 0

)
. In this

matrix, the upper left block is the identity operator for some dimension.
An important consequence of invariance under a change of basis of error operators is that the set of

errors correctable by a particular code and decoding procedure is linearly closed. Thus, ifE andD are
corrected by the decoding procedure, then so isαE+βD. This observation also follows from the linearity
of quantum mechanically implementable operations.

We explain the condition for correctability by using the subsystems interpretation of decoding proce-
dures. For simplicity, assume that1l ∈ E . To show that correctability ofE implies detectability of all
E ∈ E†E , suppose that we have a decoding procedure that recovers the information encoded inC after
any of the errors inE have occurred. Every physically realizable decoding procedure can be implemented
by first adding “ancilla” quantum systems in a prepared pure state to form a total system labeledT, then
applying a unitary mapU to the state ofT, and finally separatingT into a pair of systemsS,Q, where
S corresponds to the syndrome subsystem, andQ is a quantum system with the same dimension as the
code that carries the quantum information after decoding. Denote the state space of the physical system
containingC asH, and the state space of systemX byHX, whereX is any one of the other systems. Let
V be the unitary operator that encodes information by mappingHQ ontoC ⊆ H. We have the following
relationships:

HQ
V↔ C ⊆ H ⊆ HT

U↔ HS ⊗HQ. (41)

Here, we used bidirectional arrows “↔” to emphasize that the operatorsV andU can be inverted on
their range and therefore identify the states in their domains with the states in their ranges. The inclusion
H ⊆ HT implicitly identifiesH with the subspace determined by the prepared pure state on the ancillas.
The last state space of Eq.41 is expressed as a tensor product (“⊗”), which is the state space of the

combined systemSQ. For states ofHQ we write |||ψ〉〉〉 = |||ψ〉〉〉
Q

V↔ |||ψ〉〉〉
L
∈ C. Because1l is a correctable

error, it must be the case that|||ψ〉〉〉
L

U↔ |||0〉〉〉
S
|||ψ〉〉〉 ∈ HS ⊗HQ for some state|||0〉〉〉

S
of the syndrome subsystem.

To establish this fact, use linearity of the maps. In general:

|||ψ〉〉〉
L
→ Ei|||ψ〉〉〉

L

U↔ |||i〉〉〉
S
|||ψ〉〉〉 (42)

The|||i〉〉〉
S

need not be normalized or orthogonal. LetF be the subspace spanned by the|||i〉〉〉
S
. ThenU induces

an identification ofF ⊗HQ with a subspacēC ⊆ H. This is the desired subsystem identification. We can
then see how the errors act in this identification:

|||ψ〉〉〉
L

↔ |||0〉〉〉
S
|||ψ〉〉〉

↓
Ei|||ψ〉〉〉

L
↔ |||i〉〉〉

S
|||ψ〉〉〉

(43)
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This means that for all|||ψ〉〉〉 and|||φ〉〉〉,

L〈〈〈ψ|||E†
jEi|||φ〉〉〉

L
= S〈〈〈j|||i〉〉〉

S
〈〈〈ψ|||φ〉〉〉, (44)

that is, all errors inE†E are detectable.
Now, suppose that all errors inE†E are detectable. To see that this implies correctability ofE , choose

a basis for the errors so thatλij = δijλi with λi = 1 for i < s andλi = 0 otherwise. Define a subsystem
identification by

|||i〉〉〉
s
|||ψ〉〉〉 W→ Ei|||ψ〉〉〉

L
, (45)

for 0 ≤ i < s. By assumption and construction,L〈〈〈ψ|||E†
jEi|||ψ〉〉〉

L
= δij, which implies thatW is unitary

(after linear extension), and so this is a proper identification. Fori ≥ s,Ei|||ψ〉〉〉
L
= 0, which implies that for

states in the code, these errors have probability0. Therefore, the identification can be used to successfully
correctE .

6 Constructing Codes

6.1 Stabilizer Codes

Most useful quantum codes are based on “stabilizer” constructions [4, 5]. Stabilizer codes are useful
because they make it easy to determine which Pauli-product errors are detectable and because they can
be interpreted as special types of classical “linear” codes. The latter feature makes it possible to use
well-established techniques from the theory of classical error-correcting codes to construct good quantum
codes.

A stabilizer code of lengthn for k qubits (abbreviated as an “[[n, k]] code”), is a2k-dimensional
subspace of the state space ofn qubits that is characterized by the set of products of Pauli operators that
leave each state in the code invariant. Such Pauli operators are said to “stabilize” the code. A simple
example of a stabilizer code is the quantum repetition code introduced in Sec.3.2. The code’s states
α|||000〉〉〉+ β|||111〉〉〉 are exactly the states that are unchanged after applyingσz

(1)σz
(2) or σz

(1)σz
(3).

To simplify the notation, we writeI = 1l, X = σx, Y = σy, andZ = σz. A product of Pauli operators
can then be written asZIXI = σz

(1)σx
(3) (as an example of length4) with the ordering determining which

qubit is being acted upon by the operators in the product.
We can understand the properties of stabilizer codes by working out the example of the quantum

repetition code with the stabilizer formalism. A stabilizer of the code isS = {ZZI, ZIZ}. Let S̄ be the
set of Pauli products that are expressible up to a phase as products of elements ofS. For the repetition
code,S̄ = {III, ZZI, ZIZ, IZZ}. S̄ consists of all Pauli products that stabilize the code. The crucial
property ofS is that its operators commute, that is, forA,B ∈ S, AB = BA. According to results
from linear algebra, it follows that the state spaceH can be decomposed into orthogonal subspacesHλ

such that forA ∈ S and|||ψ〉〉〉 ∈ Hλ, A|||ψ〉〉〉 = λ(A)|||ψ〉〉〉. TheHλ are the common eigenspaces ofS. The
stabilizer codeC defined byS is the subspace stabilized by the operators inS, which means that it is given
by Hλ with λ(A) = 1. The subspaces for otherλ(A) have equivalent properties and are often included
in the set of stabilizer codes. For the repetition code, the stabilized subspace is spanned by the logical
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basis|||000〉〉〉 and|||111〉〉〉. From the point of view of stabilizers, there are two ways in which a Pauli product
B can be detectable: (1) IfB ∈ S̄, because in this caseB acts as the identity on the code, and (2) if
B anticommutes with at least one member (sayA) of S. To see the second way, let|||ψ〉〉〉 be in the code.
ThenA (B|||ψ〉〉〉) = (AB) |||ψ〉〉〉 = − (BA) |||ψ〉〉〉 = −B (A|||ψ〉〉〉) = −B|||ψ〉〉〉. ThusB|||ψ〉〉〉 belongs toHλ with
λ(A) = −1. Because this subspace is orthogonal toC = H1, B is detectable. We define the set of Pauli
products that commute with all members ofS asS̄⊥. Thus,B is detectable if eitherB 6∈ S̄⊥ or B ∈ S̄.
Note that becausēS consists of commuting operators,S̄ ⊆ S̄⊥.

To construct a stabilizer code that can correct all errors of weight at most one (a “quantum one-error-
correcting code”), it suffices to findS with the minimum weight of non-identity members ofS̄⊥ being
at least three (3 = 2 · 1 + 1, see Thm.38). In this case we say that̄S⊥ has minimum distance three.
As an example, we can exhibit a stabilizer for the famous length-five one-error-correcting code for one
qubit [19, 24]:

S = {XZZXI, IXZZX,XIXZZ,ZXIXZ}. (46)

As a general rule, it is desirable to exhibit the stabilizer minimally, which means that no member is the
product up to a phase of some of the other members. In this case, the number of qubits encoded isn−|S|,
wheren is the length of the code and|S| is the number of elements ofS.

The correspondence between stabilizer codes and classical binary codes is obtained by replacing the
symbolsI,X, Y andZ in a Pauli product by00, 01, 10 and11, respectively. Thus, the members of the
stabilizer can be thought of as binary vectors of length2n. We use arithmetic modulo two for sums, inner
products and application of a binary matrix. Because the numbers modulo two (Z2) form a mathematical
“field”, the basic properties of vectors spaces and linear algebra apply to binary vectors and matrices. Thus,
the stabilizer is minimal in the sense introduced above if the corresponding binary vectors are independent
over Z2. Given two binary (column) vectorsx andy of length two associated with Pauli products, the
property of anticommuting is equivalent toxTBy = 1, whereB is the block diagonal2n × 2n matrix

with 2 × 2 blocks given by

(
0 1
1 0

)
. This means that̄S⊥ can be identified with the set of vectorsx

such thatxTBy = 0 for all binary vectorsy associated with the members ofS. It turns out that the
inner product〈x, y〉 = xTBy arises in the study of classical codes over the four-element mathematical
fieldGF (4), which can be represented by the vectors00, 01, 10 and11 with addition modulo2 and a new
multiplication operation. This relationship leads to the construction of many good stabilizer codes [6].

6.2 Conserved quantities, symmetries and noiseless subsystems.

Even though a physical system may be exposed to error, some of its properties are often not affected by
the errors. If these “conserved quantities” can be identified with the defining quantities of qubits or other
information units, error-free storage of information can be ensured without active intervention. This is the
idea behind noiseless subsystems.

When do noiseless subsystems exist and how can they be constructed? The examples discussed in
the previous sections show that a noiseless subsystem may be a subset of physical qubits, as in the trivial
two-qubit example, or it may require a more abstract subsystem identification, as in the example of the
three spin-1

2
particles. As will be explained, in both cases, there are quantities conserved by the errors that

can be used to identify the noiseless subsystem.
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A simple classical example for the use of conserved quantities consists of two physical bits subject
to errors that either flip both bits or leave them alone. A quantity invariant under this noise model is the
parityP (s) of a states of the two bits. The parityP (s) is defined as the number of1’s in the bitstrings
reduced modulo2: P (00) = P (11) = 0 andP (01) = P (10) = 1. Flipping both bits does not change
the value ofP . Consequently, the two values ofP can be used to identify the two states of a noiseless bit.
The syndrome subsystem can be associated with the value (nonconserved) of the first physical bit using
the function defined byF (0b) = 0, F (1b) = 1. The corresponding subsystem identification is obtained
by using the values ofP andF as the states of the syndrome (left) and the noiseless, information-carrying
subsystem (right) according toab ↔ F (ab) · P (ab).

In quantum systems, conserved quantities are associated with the presence of symmetries, that is, with
operators that commute with all possible errors. In the trivial two-qubit example, operators acting only on
qubit2 commute with the error operators. In particular, ifE is any one of the errors,Eσu

(2) = σu
(2)E, for

u = x, y, z. It follows that the expectations ofσu
(2) are conserved. That is, ifρ is the initial state (density

matrix) of the two physical qubits andρ′ is the state after the errors acted, then trσu
(2)ρ′ = tr σu

(2)ρ.
Because the state of qubit2 is completely characterized by these expectations, it follows immediately that
it is unaffected by the noise.

The trivial two-qubit example suggests a general strategy for finding a noiseless qubit: First determine
the commutant of the errors, which is the set of operators that commute with all errors. Then find a subset
of the commutant that is algebraically equivalent to the operators characterizing a qubit. The equivalence
can be formulated as a one-to-one mapf from qubit operators to operators in the commutant. For the
range off to be algebraically equivalent,f must be linear and satisfyf(A†) = f(A)† andf(AB) =
f(A)f(B). Once such an equivalence is found, a fundamental theorem from the representation theory of
finite dimensional operator algebras implies that a subsystem identification for a noiseless qubit exists [22,
25].

The strategy can be applied to the example of three spin-1
2

particles subject to collective errors. One
can determine the commutant by using the physical properties of spin to find the conserved quantities as-
sociated with operators in the commutant, as suggested in Fig.8. Alternatively, observe that by definition,
this error model is symmetric under permutations of the particles. Therefore, the actions of these permu-
tations on the state space form a groupΠ of unitary operators commuting with the errors. It is a fact that
the commutant of the set of collective errors consists of the linear combinations of operators inΠ. With
respect to the groupΠ, one can immediately determine the spaceV3/2 of symmetric states, that is, those
that are invariant under the permutations. It is spanned by

|||↑↑↑〉〉〉, 1√
3

(
|||↑↑↓〉〉〉+ |||↑↓↑〉〉〉+ |||↓↑↑〉〉〉

)
,

1√
3

(
|||↑↓↓〉〉〉+ |||↓↑↓〉〉〉+ |||↓↓↑〉〉〉

)
, |||↓↓↓〉〉〉. (47)

A basic result from the representation theory of groups implies that the projection ontoV3/2 is given by
P3/2 = 1

6

∑
g∈Π g. The orthogonal complementV1/2 of V3/2 is invariant underΠ and can be analyzed

separately. With the subsystem identification of Eq.20 already in hand, one can see that the permutation
π1 which permutes the spins according to1 → 2 → 3 → 1 acts on the noiseless qubit by applying
Z240◦ = e−iσz2π/3, a 240◦ rotation around thez-axis. Similarly, the permutationπ2 which exchanges the
last two spins acts asσx on the qubit. To make them algebraically equivalent to the corresponding qubit
operators, it is necessary to eliminate their action onV3/2 by projecting ontoV1/2: π′1 = (1− P3/2)π1 and
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π′2 = (1 − P3/2)π2. Sums of products ofπ′1 andπ′2 are equivalent to the corresponding sums of products
of Z240◦ andσx, which generate all qubit operators. To get the subsystem identification of Eq.20, one
can start with a common eigenstate|||ψ〉〉〉 of π′1 (a z-rotation on the noiseless qubit) and2Jz (the syndrome
subsystem’sσz) with eigenvaluese−i2π/3 and 1, respectively. The choice of eigenvalues implies that
|||ψ〉〉〉 ↔ |||↑〉〉〉 · |||0〉〉〉 in the desired identification. The other logical states of the syndrome spin-1

2
and the

noiseless qubit can be obtained by applyingπ′2, 2Jx andπ′22Jx to |||ψ〉〉〉, which act by flipping the states
of the qubit or the syndrome spin. This method for obtaining the subsystem identification generalizes to
other operator equivalences and error operators.

7 Fault Tolerant Quantum Communication and Computation

The utility of information and information processing depends on the the ability to implement large num-
bers of information units and information processing operations. We say that an implementation of in-
formation processing is scalable if the implementation can realize arbitrarily many information units and
operations without loss of accuracy and with physical resource overheads that are polynomial (or “effi-
cient”) in the number of information units and operations. Scalable information processing is achieved by
implementing information fault tolerantly.

One of the most important results of the work in quantum error-correction and fault-tolerant computa-
tion is the accuracy threshold theorem, according to which scalability is possible, in principle, for quantum
information.

Theorem. Assume the requirements for scalable QIP (see below). If the error per gate
is less than a threshold, then it is possible to efficiently quantum compute arbitrarily accu-
rately. (48)

7.1 Requirements for Scalable QIP

The value of the threshold accuracy (or error) depends strongly on which set of requirements is used, in
particular, the error model that is assumed. The requirements are closely related to the basic requirements
for constructing a quantum information processor [26] but have to include explicit assumptions on the
error model and on the temporal and spatial aspects of the available quantum control.
Scalable physical systems:It is necessary to have access to physical systems that are able to support
qubits or other basic units of quantum information. The systems must be scalable, that is, they must be
able to support any number of independent qubits.
State preparation: One must be able to prepare any qubit in the standard initial state|||0〉〉〉. Any preexisting
content is assumed to be lost, as would happen if, for example, the qubit is first discarded and then replaced
by a prepared one. The condition can be weakened; That is, it is sufficient that a large fraction of the qubits
can be prepared in this way.
Measurement:A requirement is the ability to measure any qubit in the logical basis. Again, it is sufficient
that a sufficiently large fraction of the qubits are measurable. For solving computational problems with
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deterministic answers, the standard projective measurement can be replaced by weak measurements that
return a noisy number whose expectation is the probability that a qubit is in the state|||1〉〉〉 [17].
Quantum control: One must have the ability to implement a universal set of unitary quantum gates acting
on a small number (usually at most two at a time) of qubits. For most accuracy thresholds, it is necessary to
be able to apply the quantum control in parallel to any number of disjoint pairs of qubits. This parallelism
requirement can be weakened if a nearly noiseless quantum memory is available. The requirement that
it be possible to apply two-qubit gates to any pair of qubits is unrealistic given the constraints of three-
dimensional space. Work on how to deal with this problem is ongoing [11]. The universality assumption
can be substantially weakened by replacing some or all unitary quantum gates with operations to prepare
special states or by having additional measurement capabilities. See, for example [27] and the references
therein.
Errors: The error probability per gate must be below a threshold and satisfy independence and locality
properties (see Sec.4). The definition of “gate” includes the ‘no-op”, which is the identity operation
implemented over the time required for a computational step. For the most pessimistic independent,
local error models, the error threshold is above∼ 10−6. For the independent depolarizing error model,
it is believed to be better than10−4 [28]. For some special error models, the threshold is substantially
higher. For example, for the independent “erasure” error model, where error events are always detected,
the threshold is above.01, and for an error model whose errors are specific, unintentional measurements
in the standard basis of a qubit, the threshold is1 [29, 30]. The threshold is also well above.01 when the
goal is only to transmit quantum information through noisy quantum channels [31].

7.2 Realizing Fault-Tolerance

The existing proofs of the accuracy threshold theorems consist of explicit instructions for building a scal-
able quantum information processor and analyses of its robustness against the assumed error model. The
instructions for realizing scalable computation are based on the following simple idea. Suppose that the
error rate per operation for some way of realizing qubits isp. We can use these qubits and a quantum
error-correcting code to encode logical qubits for which the storage error rate is reduced. For example, if
a one-error correcting code is used, the error rate per storage interval for the logical qubits is expected to
be≤ cp2 for some constantc. Suppose that we can show how to implement encoded operations, prepara-
tions, measurement and the subroutines required for error-correction such that this inequality is now valid
for each basic encoded step, perhaps for a larger constantC. Suppose furthermore that the errors for the
encoded information still satisfy the assumed error model. The newly defined logical qubits then have an
error rate of≤ Cp2, which is less thanp for p < 1/C. We can use the newly realized qubits as a foundation
for making higher level logical qubits. This results in multiple levels of encodings. In the next level (level
2), the error rate is≤ C3p4, and afterk iterations it is≤ C2k−1p2k

, a doubly-exponentially decreasing
function of k. This procedure is called “concatenation” (Fig.9). Because the complexity, particularly
the number of physical qubits needed for each final logical qubit, grows only singly-exponentially ink,
the procedure is efficient. Specifically, to achieve a logical error ofε per operation requires of the order
of | log(ε)|r resources per logical qubit for some finiter. In practice, this simple idea is still dauntingly
complex, but there is hope that for realistic errors in physical systems and by cleverly trading off different
variations of these techniques, much of the theoretical complexity can be avoided [32].
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Level Error rate
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2 p2 ≤ Cp2
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{
p3 ≤ C(Cp2)2

= C22−1p22

4

{
p4 ≤ C(C3p22

)2

= C23−1p23

...

k ≤ C2k−1p2k

FIG. 9: Schematic representation of concatenation. The bottom level represents qubits realized more-or-
less directly in a physical system. Each next level represents logical qubits defined by means of subsystems
in terms of the previous level’s qubits. More efficient subsystems might represent multiple qubits in one
code block rather than the one qubit per code block shown here.

Many important developments and ideas of quantum information were ultimately needed to realize
encoded operations, preparations, measurements and error-correction subroutines that behave well with
respect to concatenation. Stabilizer codes provide a particularly nice setting for implementing many of
these techniques. One reason is that good stabilizer codes are readily constructed. Another is that they
enable encoding operations in a way that avoids spreading errors between the qubits of a single code
word [14]. In addition, there are many tricks based on teleportation that can be used to maintain the syn-
drome subsystems in acceptably low-error states and to implement general operations systematically [33].
To learn more about all of these techniques, see the textbook by Nielsen and Chuang [34] and the works
of Gottesman [14] and Preskill [15].
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8 Concluding Remarks

The advancements in quantum error-correction and fault-tolerant QIP have shown that in principle scal-
able quantum computation is achievable. This is a crucial result because it suggests that experimental
efforts in QIP will eventually lead to more than a few small scale applications of quantum information to
communication and problems with few qubits. However, the general techniques for achieving scalability
that are known are difficult to realize. Existing technologies are far from achieving sufficient accuracy
even for just two qubits—at least in terms of the demands of the usual accuracy threshold theorems. There
is hope that more optimistic thresholds can be shown to apply if one considers the specific constraints
of a physical device, better understands the dominant sources of errors, and exploits tailor-made ways of
embedding quantum information into subsystems. Current work in this area is focused on finding such
methods of quantum error control. These methods include approaches to error control not covered in this
introduction—for example, techniques for actively turning off the error-inducing environmental interac-
tions [35, 36] and modifications to controlling quantum systems that eliminate systematic and calibration
errors [37, 38]. Further work is also needed to improve the thresholds for the more pessimistic error
models and for developing more-efficient scalability schemes.
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9 Glossary

Bit. The basic unit of deterministic information. It is a system that can be in one of two possible states,0

and1.
Bit string. A sequence of0’s and1’s that represents a state of a sequence of bits. Bit strings are words in

the binary alphabet.
Classical information. The type of information based on bits and bit strings and more generally on words

formed from finite alphabets. This is the information used for communication between people. Clas-
sical information can refer to deterministic or probabilistic information, depending on the context.

Code. A set of states that can be used to represent information. The set of states needs to have the
properties of the type of information to be represented. The code is usually a subset of the states of
a given systemQ. It is then aQ-codeor acode onQ. If information is represented by a state in the
code,Q is said tocarry the information.

Code word. A state in a code. The term is primarily used for classical codes defined on bits or systems
with non-binary alphabets.

Concatenation. An iterative procedure in which higher-level logical information units are implemented
in terms of lower-level units.

Control error. An error due to non-ideal control in applying operations or gates.
Communication channel. A means for transmitting information from one place to another. It can be

associated with a physical system in which the information to be transmitted is stored by the sender.
The system is subsequently conveyed to the receiver, who can then make use of the information.

Correctable error set. For a given code, a set of errors such that there exists an implementable procedure
R that, after any one of these errorsE acts on a statex in the code, returns the system to the state:
x = REx. What procedures are implementable depends on the type of information represented by
the system and, if it is a physical system, its physics.

Decoding. The process of transferring information from an encoded form to its “natural” form. In the
context of error correction, decoding is often thought of as consisting of two steps, one which
removes the errors’ effects (sometimes called the recovery procedure) and one that extracts the
information (often also called decoding, in a narrower sense).

Depolarizing errors. An error model for qubits in which random Pauli operators are applied indepen-
dently to each qubit.

Detectable error. For a given code, an error that has no effect on an initial state in the code if an obser-
vation determines that the state is still in the code. If the state is no longer in the code, the error is
said to have been detected and the state no longer represents valid information.

Deterministic information. The type of information based on bits and bit strings. This is the same as
classical information but explicitly excludes probabilistic information.
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Encoding. The process of transferring information from its “natural” form to an encoded form. It requires
an identification of the valid states associated with the information and the states of a code. The
process acts on an information unit and replaces it with the system whose state space contains the
code.

Environment. In the context of information encoded in a physical system, it refers to other physical
systems that may interact with the information-carrying system.

Environmental noise. Noise due to unwanted interactions with the environment.
Error. Any unintended effect on the state of a system, particularly in storing or otherwise processing

information.
Error basis. A set of state transformations that can be used to represent any error. For quantum systems,

errors can be represented as operators acting on the system’s state space, and an error basis is a
maximal, linearly independent set of such operators.

Error control. The term for general procedures that limit the effects of errors on information represented
in noisy, physical systems.

Error correction. The process of removing the effects of errors on encoded information.
Error-correcting code. A code with additional properties that enable a decoding procedure to remove

the effects of the dominant sources of errors on encoded information. Any code is error-correcting
for some error-model in this sense. To call a code “error-correcting” emphasizes the fact that it was
designed for this purpose.

Error model. An explicit description of how and when errors happen in a given system. Typically, a
model is specified as a probability distribution over error operators. More general models may need
to be considered, particularly in the context of fault tolerant computation, for which correlations in
time are important.

Fault tolerance. A property of encoded information that is being processed with gates. It means that er-
rors occurring during processing, including control errors and environmental noise, do not seriously
affect the information of interest.

Gate. An operation applied to information for the purpose of information processing.
Hamming distance. The Hamming distance between two binary words (sequences of0 and1) is the

number of positions in which the two words disagree.
Hilbert space. A n-dimensional Hilbert space consists of all complexn-dimensional vectors. A defining

operation in a Hilbert space is the inner product. If the vectors are thought of as column vectors,
then the inner product〈x, y〉 of x andy is obtained by forming the conjugate transposex† of x and
calculating〈x, y〉 = x†y. The inner product induces the usual norm|x|2 = 〈x, x〉.

Information. Something that can be recorded, communicated and computed with. Information isfun-
gible, which implies that its meaning can be identified regardless of the particulars of the physical
realization. Thus, information in one realization (such as ink on a sheet of paper) can be easily
transferred to another (for example, spoken words). Types of information include deterministic,
probabilistic and quantum information. Each type is characterized by information units, which are
abstract systems whose states represent the simplest information of this type. These define the “nat-
ural” representation of the information. For deterministic information the unit is thebit, whose states
are symbolized by0 and1. Information units can be put together to form larger systems and can be
processed with basic operations acting on a small number of units at a time.
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Length. For codes onn basic information units, the length of the code isn.
Minimum distance. The smallest number of errors that is not detectable by a code. In this context, the

error model consists of a set of error operators without specified probabilities. Typically the concept
is used for codes onn information units and the error model consists of operators acting on any one
of the units. For a classical binary code, the minimum distance is the smallest Hamming distance
between two code words.

Noise. Any unintended effect on the state of a system, particularly an effect with a stochastic component
due to incomplete isolation of the system from its environment.

Operator. A function transforming the states of a system. Operators may be restricted depending on the
system’s properties. For example, operators acting on quantum systems are always assumed to be
linear.

Pauli operators. The Hermitian matricesσx, σy andσz (Eq.9) acting on qubits. It is often convenient to
consider the identity operator to be included in the set of Pauli operators.

Physical system.A system explicitly associated with a physical device or particle. The term is used to
distinguish between abstract systems used to define a type of information and specific realizations,
which are subject to environmental noise and errors due to other imperfections.

Probabilistic bit. The basic unit of probabilistic information. It is a system whose state space consists of
all probability distributions over the two states of a bit. The states can be thought of as describing
the outcome of a biased coin flip before the coin is flipped.

Probabilistic information. The type of information obtained when the state spaces of deterministic in-
formation are extended with arbitrary probability distributions over the deterministic states. This is
the main type of classical information to which quantum information is compared.

Quantum information. The type of information obtained when the state space of deterministic informa-
tion is extended with arbitrary superpositions of deterministic states. Formally, each deterministic
state is identified with one of an orthonormal basis vector in a Hilbert space and superpositions are
unit-length vectors that are expressible as complex linear sums of the chosen basis vectors. Ulti-
mately it is convenient to extend this state space again by permitting probability distributions over
the quantum states. This is still called quantum information.

Qubit. The basic unit of quantum information. It is the quantum extension of the deterministic bit; that
is, its state space consists of the unit-length vectors in a two dimensional Hilbert space.

Repetition code. The classical, binary repetition code of lengthn consists of the two words00 . . . 0 and
11 . . . 1. For quantum variants of this code one applies the superposition principle to obtain the
states consisting of all unit-length complex linear combinations of the two classical code words.

Scalability. A property of physical implementations of information processing that implies that there are
no bounds on accurate information processing. That is, arbitrarily many information units can be
realized and they can be manipulated for an arbitrarily long amount of time without loss of accuracy.
Furthermore, the realization is polynomially efficient in terms of the number of information units
and gates used.

States. The set of states for a system characterizes the system’s behavior and possible configurations.
Subspace.For a Hilbert space, a subspace is a linearly closed subset of the vector space. The term can be

used more generally for a systemQ of any information type: A subspace ofQ or, more specifically,
of the state space ofQ is a subset of the state space that preserves the properties of the information
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type represented byQ.
Subsystem.A typical example of a subsystem is the first (qu)bit in a system consisting of two (qu)bits. In

general, to obtain a subsystem of systemQ, one first selects a subsetC of Q’s state space and then
identifiesC as the state space of a pair of systems. Each member of the pair is then a subsystem of
Q. Restrictions apply depending on the types of information carried by the system and subsystems.
For example, ifQ is quantum and so are the subsystems, thenC has to be a linear subspace and the
identification of the subsystems’ state space withC has to be unitary.

Subsystem identification.The mapping or transformation that identifies the state space of two systems
with a subsetC of states of a systemQ. In saying thatL is a subsystem ofQ, we also introduce a
second subsystemS and identify the state space of the combined systemLS with C.

Syndrome. One of the states of a syndrome subsystem. It is often used more narrowly for one of a
distinguished set of basis states of a syndrome subsystem.

Syndrome subsystem.In identifying an information-carrying subsystem in the context of error-correction,
the other member of the pair of subsystems required for the subsystem identification is called the
syndrome subsystem. The terminology comes from classical error-correction, in which the syn-
drome is used to determine the most likely error that has happened.

System. An entity that can be in any of a specified number of states. An example is a desktop computer
whose states are determined by the contents of its various memories and disks. Another example
is a qubit, which can be thought of as a particle whose state space is identified with complex, two-
dimensional, length-one vectors. Here, a system is always associated with a type of information,
which in turn determines the properties of the state space. For example, for quantum information
the state space is a Hilbert space. For deterministic information, it is a finite set called an alphabet.

Twirling. A randomization method for ensuring that errors act like a depolarizing error model. For one
qubit, it involves applying a random Pauli operator before the errors occur and then undoing the
operator by applying its inverse.

Unitary operator. A linear operatorU on a Hilbert space that preserves the inner product. That is, for
all x andy, 〈Ux, Uy〉 = 〈x, y〉. If U is given in matrix form, then this condition is equivalent to
U †U = 1l.

Weight. For a binary word, the weight is the number of1’s in the word. For an error operator acting on
n systems by applying an operator to each one of them, the weight is the number of non-identity
operators applied.
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